Προϊόν καταλόγου

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑΝΝΑ ΜΑΜΩΝΑ - DOWNS ΙΩΑΝΝΗΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ | korfiatisbooks.gr
ΓΙΑΝΝΑ ΜΑΜΩΝΑ - DOWNS ΙΩΑΝΝΗΣ ΠΑΠΑΔΟΠΟΥΛΟΣΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑΗ πορεία της σκέψης κατά την αναζήτηση της λύσηςΜαθηματικά
Τελική τιμή: €11,90
Αρχική τιμή: €17,00 Έκπτωση 30% (€5,10)

Δωρεάν έξοδα αποστολής για αγορές 30 ευρώ και άνω

ISBN978-960-524-483-5
ΕκδόσειςΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ
Έτος έκδοσης16-5-2017
Διαστάσεις17Χ24 εκ.
Σελίδες228

Περιγραφή

O πυρήνας του μαθηματικού έργου είναι η επίλυση προβλημάτων τα οποία είναι ανοικτά για τη μαθηματική επιστήμη. Στο πλαίσιο της μαθηματικής παιδείας, η επίλυση προβλήματος συνιστά μια μαθησιακή προοπτική την οποία επέβαλε η ανάγκη της «ενεργού» μάθησης των μαθηματικών και της παραλληλίας της με τον τρόπο που δομείται αυτό καθ’ αυτό το μαθηματικό έργο. Ο ούγγρος μαθηματικός Polya ήταν εκείνος που πρώτος διατύπωσε γενικές στρατηγικές (τις Ευρετικές) για την επίλυση προβλημάτων, ενώ άλλοι ερευνητές αναλύουν έκτοτε όλες εκείνες τις ιδιαίτερες διεργασίες του ανθρώπινου νου όταν επιλύει προβλήματα στα μαθηματικά ώστε, με βάση την ανάλυση αυτή, να διαμορφωθούν αποτελεσματικές προσεγγίσεις διδακτικής παρέμβασης.

Στο βιβλίο εξετάζονται θέματα όπως η νοερή επιχειρηματολογία, ο έλεγχος, η διερεύνηση και ο πειραματισμός, η ανάκληση και η εφαρμογή της μαθηματικής γνώσης, η μαθηματικοποίηση-μοντελοποίηση, η χρήση συναρτήσεων, η αλληλοσυσχέτιση επίλυσης προβλήματος και απόδειξης και, τέλος, η δημιουργία προβλήματος. Παρουσιάζεται η πορεία επίλυσης προβλημάτων με διαβαθμισμένη δυσκολία, καθώς κάποια από αυτά είναι δυνατόν να αντιμετωπιστούν και από καλούς στα μαθηματικά μαθητές του δημοτικού, αλλά πολλά απαιτούν ιδιαίτερα προχωρημένη μαθηματική γνώση. Η προσέγγισή μας είναι να ενθαρρύνουμε τους μαθητές/φοιτητές να «κάνουν» μαθηματικά παρά να μελετούν μαθηματικά.
Η έκδοση απευθύνεται τόσο σε φοιτητές Μαθηματικών και Παιδαγωγικών τμημάτων όσο και σε εκπαιδευτικούς όλων των βαθμίδων, που είτε επιθυμούν να βελτιώσουν τη διδασκαλία τους είτε να αναπτύξουν τις ικανότητές τους ως λύτες προβλημάτων στα μαθηματικά, καθώς και σε νέους ερευνητές που θα θελήσουν να θεραπεύσουν ερευνητικά πολλά ανοικτά θέματα της μαθηματικής παιδείας στην Επίλυση Προβλήματος.

Περιεχόμενα

Πρόλογος
Εισαγωγή

1 Το Πρόβλημα στα Μαθηματικά
1.1 Τι είναι πρόβλημα
1.2 Είδη προβλημάτων
1.3 Μέρη προβλήματος
1.4 Ασκήσεις έναντι προβλημάτων
1.5 Κλειστά – ανοικτά προβλήματα
1.6 Το τρίγωνο του Pascal

2 Polya – Ευρετικές
2.1 H συνεισφορά του Polya στην Eπίλυση Προβλήματος
2.2 Πέντε βήματα στην πορεία επίλυσης
2.3 Eυρετικές

3 Νοερή επιχειρηματολογία

4 Έλεγχος
Εισαγωγή
4.1 Tι κάνουμε κατά την επίλυση, τι από αυτά μπορεί πράγματι να συνεισφέρει στη λύση;
4.2 Bρήκαμε αυτή τη λύση. Πώς θα σιγουρευτούμε ότι είναι η σωστή;
4.2.1 H απάντησή μας έχει νόημα;
4.2.2 H μέθοδος που ακολουθήσαμε δικαιολογείται στην κάθε της λεπτομέρεια;
4.2.3 Kάπου φαίνεται ότι υπάρχει λάθος:
4.2.4 Έχουμε την αίσθηση ότι αυτή είναι η απάντηση, αλλά πώς να είμαστε σίγουροι;
4.3 Mπορούμε να προχωρήσουμε με αυτόν τον τρόπο. Tι άλλο μπορούμε να κάνουμε επιπλέον;
4.4 Tι είναι πράγματι σημαντικό εδώ;
4.5 Έχουμε αυτή την πληροφορία. Πώς θα τη χρησιμοποιήσουμε όσο το δυνατόν καλύτερα;
4.6 Πώς είναι δυνατόν να εκμεταλλευτούμε το διαφορετικό των ιδιοτήτων που παρατηρούμε σε ένα σύστημα;

5 Διερεύνηση και πειραματισμός

6 Ανάκληση και εφαρμογή της μαθηματικής γνώσης στην Επίλυση Προβλήματος

7 Οι συναρτήσεις από την προοπτική της Επίλυσης Προβλήματος.Μαθηματικοποίηση – Μοντελοποίηση
7.1 Συναρτήσεις – αντιστοιχίες
7.2 Μοντελοποίηση – μαθηματικοποίηση

8 Απόδειξη και Επίλυση Προβλήματος

9 Προβλήματα πολλαπλών λύσεων

10 Δημιουργία Προβλήματος
Εισαγωγή
10.1 Ο όρος «κατάσταση-πλαίσιο»
10.1.1 Το τραπέζι του μπιλιάρδου
10.1.2 Τα διαθέσιμα νομίσματα
10.2 Η προσέγγιση «What if not» («Τι θα συμβεί αν δεν»)
10.2.1 Το ύψος του τριγώνου
10.2.2 Ο γρίφος του 1089 (Blake, 1993)
10.3 Η λειτουργικότητα της Δ.Π., η σχέση της με την Ε.Π. και την ανάπτυξη της θεωρίας στην τάξη των Μαθηματικών

11 Η ταυτότητα της Επίλυσης Προβλήματος
Εισαγωγή
11.1 Eπίλυση προβλήματος σε αντιδιαστολή με άλλα πεδία, που έχουν μελετηθεί στη μαθηματική παιδεία
11.1.1 Επίλυση προβλήματος έναντι απόδειξης
11.1.2 Πότε η επίλυση προβλήματος συμβάλλει στην πρόσληψη εννοιών και στην εννοιολογική κατανόηση
11.1.3 «Αναπαραστάσεις» έναντι μαθηματικής δομής και ο ρόλος τους στην επίλυση προβλήματος
11.1.4 Θέτοντας ερωτήματα και δημιουργώντας προβλήματα
11.2 Περαιτέρω ζητήματα που προκύπτουν από την ατζέντα της επίλυσης προβλήματος
11.2.1 Τεχνικές επίλυσης προβλήματος
11.2.2 Εφαρμογή της προϋπάρχουσας γνώσης στο πλαίσιο της επίλυσης προβλήματος
11.2.3 Διερεύνηση (ή διερευνητική εργασία)
11.2.4 Ανάγνωση μαθηματικού κειμένου σε σχέση με την επίλυση προβλήματος

Βιβλιογραφία
Ευρετήριο

Σχόλια

Περισσότερα βιβλία σχετικά με την επιλογή σας

Εγγραφείτε στο newsletter μας

Δωρεάν έξοδα αποστολής για αγορές 30 ευρώ και άνω